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Abstract. The performance of large-scale AI models has advanced rapidly, yet progress 
toward artificial general intelligence (AGI) appears stalled at a fundamental 
architectural limit. Today’s systems function as powerful, monolithic “left-brained” 
analyzers that predict and compose tokens but lack grounded valuation, common 
sense, and context-sensitive control. We argue this gap is architectural and propose a 
bifurcated computational framework that augments a large language model with an 
Affective Computational Model (ACM), a specialized sub-network analogous to the 
human right brain. Trained on proprietary, multi-modal data streams reflecting lived 
human experience, the ACM computes affective appraisals and broadcasts them as 
global control signals. These signals are integrated via valenced attention, a novel 
mechanism that modulates the language model's attention patterns and memory 
routing as a function of learned affect and situational context. Achieving this level of 
machine cognition requires the end-to-end integration we present, including training 
curricula grounded in time-coherent human experience. This is made possible by our 
vertically integrated protocol, which provides a pathway for synthesizing meaning from 
annotated human interactions. Collectively, the Sentess Protocol defines a principled 
path to AGI through the vertical integration of a novel data economy, a dual model 
architecture, and a closed-loop interaction system, culminating in human-aware 
general intelligence. 
 

 

1.​Introduction 

The pursuit of AGI represents the foundational, abstract goal of artificial intelligence research: the 
creation of a machine or software with cognitive abilities that match or exceed those of a human being 
across any task.1 Since the field's inception in the 1950s, this ambition has driven decades of 
innovation, moving from the manipulation of symbols to the statistical power of deep learning.2 Yet, 
despite monumental advances, the goal of AGI remains theoretical, a hypothetical stage in the 
development of machine learning that many researchers believe is still decades, if not centuries, away.1  
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The central challenge is both philosophical and technological, requiring not only a formal definition of 
"intelligence" but also the creation of an architecture with unprecedented sophistication, creativity and 
versatility.1 This paper argues that the missing link to AGI is the integration of a complementary 
cognitive system: a computational "right brain" that provides valuation, prioritization, and contextual 
grounding. We propose a bifurcated cognitive architecture composed of two distinct but integrated 
components: a standard analytical language model that serves as the left brain, and a novel ACM that 
serves as the “right brain.” 

The core technical contribution of this paper is the description of the ACM, which utilizes a valenced 
attention mechanism to allow affective and contextual states to dynamically modulate the reasoning 
process of the analytical language model. This architecture moves beyond simple next-token prediction 
to a system that can answer the fundamental question: "What matters? 

1.2  Artificial Intelligence 

AGI, often referred to as "strong AI" or "full AI," is a theoretical form of artificial intelligence that 
would possess cognitive abilities equal to or surpassing those of a human.2 Unlike artificial narrow 
intelligence, which has demonstrated superhuman capabilities in specific, well-defined tasks like 
playing chess or generating text, an AGI system would be able to generalize knowledge, transfer skills 
between domains, and solve novel problems without task-specific reprogramming.2 The objective is to 
create software with human-like intelligence and the ability to self-teach, enabling it to perform tasks 
for which it was not explicitly trained.5 

 

This generalized capability implies a suite of integrated cognitive functions. Researchers generally agree 
that to be considered an AGI, a system must be able to: reason, use strategy, solve puzzles, and make 
judgments under uncertainty; represent knowledge, including common-sense knowledge; plan; learn; 
and communicate in natural language.6 Crucially, it must be able to integrate these skills in the 
completion of any given goal.6 Some definitions extend this to include physical interaction, such as the 
ability to sense and act, suggesting that AGI may require a physical representation or "whole organism 
architecture."3 

 

It is important to distinguish AGI from the related concept of "strong AI." While the terms are often 
used interchangeably, strong AI, as discussed by philosopher John Searle, specifically refers to an AI 
system that possesses consciousness, a mind, and subjective experience.1 AGI, in contrast, is primarily 
concerned with functional cognitive performance across a broad range of tasks. While consciousness is 
often assumed to be a prerequisite or a consequence of general intelligence, the two concepts are 
distinct.1 This report focuses on the functional requirements for AGI, arguing that an ACM is 
necessary for achieving human-level cognitive performance, while treating the philosophical "hard 
problem" of consciousness as a related but separate challenge. 
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1.3  Plateau   

The last decade has witnessed an explosion in the capabilities of AI, driven largely by the scaling of deep 
learning architectures, particularly Large Language Models.2 Systems like GPT-4, Claude, and Gemini 
have achieved remarkable performance in language understanding, generation, and even multimodal 
processing, demonstrating the ability to accept and process both text and images.2 These models are 
trained on enormous datasets, allowing them to identify and replicate complex statistical patterns in 
human-generated content.2 Their success in predicting the next token in a sequence has led to 
applications that can summarize documents, write code, and engage in sophisticated dialogue, leading 
some to proclaim the appearance of "sparks of AGI."2 

 

However, there is growing evidence that this paradigm of scaling or by simply adding more data, 
parameters, and computational power, is encountering diminishing returns.7 A 2025 survey by the 
Association for the Advancement of Artificial Intelligence found that three-quarters of AI researchers 
believe that scaling up current approaches is unlikely to succeed in building AGI.8 The fundamental 
architecture of LLMs as next-token predictors, while powerful, has inherent limitations. These systems 
operate on statistical correlations without a genuine comprehension of the concepts they manipulate.7  
 
They lack robust world models, struggle with long-term planning and reasoning, and are prone to 
generating factually incorrect information, or "hallucinations".7 The impressive performance of LLMs 
is a testament to the power of statistical pattern matching, but it is not a direct path to the generalized, 
adaptable, and grounded intelligence that defines AGI. The benefits of scaling have begun to plateau, 
making it clear that a different approach, a new architectural principle, is required to make the next 
leap.8 

 

2.​Architecture 

Current models rely on a single, unified network to perform all cognitive tasks. We propose that 
general intelligence emerges from the interaction of two specialized systems. 

This paper advances the thesis that the persistent gaps in AI's journey toward generality are not isolated 
engineering challenges but are symptoms of a single, core architectural deficit: the absence of a 
value-assignment mechanism. The missing piece is a functional model of emotional intelligence, an 
Affective Computational Model . This proposition reframes emotion not as a mere feature for affective 
display or user engagement, but as a fundamental cognitive subsystem that is a prerequisite for general 
intelligence. 

2.1  Left Brain 

Our analytic language model is a state-of-the-art open-source LLM that matches or outperforms 
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leading proprietary models on targeted benchmarks and use cases. It is composed of a stack of 
encoder-decoder layers and is responsible for processing language, representing knowledge, and 
performing logical operations. It is the seat of raw analytical and syntactical capability. 

2.2  Right Brain 

The ACM is a novel architecture designed to process and represent affective and contextual value. Its 
purpose is not to "feel" in a subjective sense, but to perform the crucial cognitive functions of emotion: 
directing attention, assigning value to potential outcomes, and grounding abstract symbols in a 
valenced experience. 
 
The ACM’s primary innovation is the Valenced Attention Mechanism. An attention function, as 
defined in seminal Transformer architectures, maps a query and a set of key-value pairs to an output. 
We extend this definition to include a fourth component: a Valence Matrix, Vl. 

The standard Scaled Dot-Product Attention is given by: 

                                  

We define Valenced Attention as: 

                         

Where: 

●​ Q, K, and V are the standard Query, Key, and Value matrices. 
●​ ⊙ represents the Hadamard (element-wise) product. 
●​ Vl is the Valence Matrix, a learnable matrix of the same dimensions as QKT. The values of Vl​ 

are generated by the ACM and represent the contextual and affective importance of the 
relationship between any two tokens in the sequence. Values >1 amplify attention on salient 
relationships, while values <1 inhibit it. 

This mechanism allows the ACM to act as a dynamic control system, guiding the "logical" thought 
process of the analytical language model by prioritizing information that is contextually relevant, a core 
function of emotion in human cognition. 
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The two models are not siloed. They are integrated via a global workspace, a shared representational 
space where the analytic language model's linguistic state and the ACM’s valence state are made 
available to the entire system. In each processing step, the ACM generates a valence matrix based on the 
current context, which is then used by the analytic language model in its next valenced attention 
calculation. This creates a cognitive loop where logic informs context and context guides logic. 

2.3  Key Areas 

The architecture described will be implemented and deployed with Sentess Protocol. The platform will 
serve as the primary interface for users to interact with the advanced model. The initial training of the 
ACM will focus on capturing data across key areas where current models fail: 
 

●​ Common Sense Reasoning: Users will validate or correct the model's inferences about intuitive 
physics and social situations29.​
 

●​ Affective Theory of Mind: Users will rate the appropriateness of the model's emotional 
responses in nuanced social dialogues30.​
 

●​ Symbol Grounding: Users will help connect abstract concepts to real-world consequences and 
values31.​
 

By focusing on these areas, we can directly address the core limitations of "left-brained" AI. The result 
will be an affective computing system that is not only more capable but also safer, intuitive, and more 
trustworthy. 
 

3.​Protocol 

The Sentess Protocol operationalizes the architectural framework proposed in this paper. It details the 
end-to-end methodology for creating an affective computing system by augmenting a state-of-the-art 
LLM, DeepSeek v3.1, with a separately trained ACM. 

Our guiding philosophy is that a crucial component of intelligence is not an emergent property of 
scaling token prediction alone. Rather, it must be explicitly grounded in the continuous, multimodal, 
and affective nature of real-world experience. The protocol is therefore designed to capture a proxy for 
this experience by processing real-world data streams from mobile devices, associating them with 
human-annotated affective states, and using this association to create a global control signal that 
modulates the reasoning and generation process of the LLM. This process transforms the LLM from a 
purely linguistic processor into a holistic, context-sensitive new form of intelligence. 
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The protocol is comprised of four primary layers: 

●​ Data Acquisition Layer: Collection of anonymized, multimodal sensory data from 
user-consented devices. 

●​ Processing & Encryption: Structuring, cleaning, and encrypting of raw data to create a 
ground-truth dataset. 

●​ Affective Model Training Layer: Development of the ACM to predict affective states from 
processed sensory data. 

●​ Foundation Model Integration & Fine-Tuning Layer: Infusing the DeepSeek v3.1 model with 
the ACM's affective signal to create the final output. 

3.1  Data Acquisition 

The foundation of the ACM is a rich, high-dimensional dataset that mirrors the sensory inputs 
through which humans perceive their environment and internal state. This data is collected from 
consenting users' smartphones, which serve as ubiquitous, sensor-rich proxies for personal experience. 

The protocol specifies the collection of data streams from a variety of on-device sensors. Critically, the 
protocol is designed to capture data that correlates with user context and affective state without 
capturing personally identifiable or sensitive content. 

●​ Motion & Inertia: Data from the accelerometer and gyroscope provide a high-resolution 
picture of the user's physical activity. This includes posture, motion intensity, and subtle 
gestures. 

●​ Ambient Environment: The microphone is used to capture features of the ambient acoustic 
environment, such as noise level, and to classify the soundscape. Crucially, raw audio is never 
recorded; on-device processing extracts non-linguistic features like Mel-frequency cepstral 
coefficients and prosodic contours only when speech is detected. 

●​ User Interaction Patterns: Metadata from device usage provides a digital analogue of behavior. 
This includes typing speed and error rate, screen-on time, application switching frequency, and 
interaction with haptic feedback systems. 

3.2  Processing 

Privacy is a foundational axiom of the Sentess. All data processing is designed to be privacy-first, 
adhering to the following principles: 

1.​ On-Device Preprocessing: Raw sensor data is processed directly on the user's device. PII is 
algorithmically stripped, and data is converted into abstract feature sets. 

2.​ Anonymization: Data transmitted for training is associated only with a randomly generated, 
unique user ID, with no link to personal accounts or device identifiers. 
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3.​ Aggregation: Data is pooled and aggregated to prevent the re-identification of any single 
individual. The protocol encourages the use of federated learning techniques where feasible to 
minimize raw data transfer. 

3.3  Data 

Raw data is unstructured and noisy. This layer refines the collected data streams and aligns them with 
explicit, human-provided affective labels to create a supervised learning dataset. 

Continuous data streams are segmented into time-stamped windows, Δt to create discrete data points. 
For each window, a state vector, St​, is formed from the raw sensor readings. 

This raw vector is then transformed into a refined feature vector, Φ(St​), through signal processing and 
feature engineering. For example: 

●​ Motion Features: The variance of the accelerometer data within Δt is calculated to quantify 
activity level. A fast fourier transform can identify dominant motion frequencies to distinguish 
between walking and vehicular travel. 

●​ Audio Features: Computed from ambient audio to create a spectral signature of the user's 
environment. 

The dataset's "ground truth" is established through user annotation. At specific intervals, or triggered 
by significant changes in the data stream, users are prompted with a simple interface to label their 
current affective state. 

We model affect using the two-dimensional valence-arousal space, which is a standard and robust 
model in psychology. 

●​ Valence (v): Represents the pleasantness of an emotion, on a scale from -1 (negative) to +1 
(positive). 

●​ Arousal (a): Represents the intensity or energy level of an emotion, on a scale from -1 (low 
energy, calm) to +1 (high energy, excited). 

Each user annotation provides a label, Et​ = (vt​,at​), which is time-stamped and associated with the 
corresponding feature vector Φ(St​). The final processed dataset, D, is a collection of these pairs: 

                       

The ACM is the functional "right brain" of the system. It is a deep learning model trained to infer the 
affective state, Et​, from the unlabeled sensory feature vector, Φ(St​). 
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Given the time-series nature of the input data, a recurrent architecture is a natural choice. The protocol 
specifies a gated recurrent unit network, which is computationally efficient and effective at capturing 
temporal dependencies. The model, fACM​, takes a sequence of feature vectors as input to predict the 
affective state at the final timestep. 

The ACM is trained on the dataset D to minimize the error between its predicted affective state, 
E^t​=(v^t​,a^t​), and the ground-truth label, Et​. The objective is to learn the optimal set of parameters, 
θACM​, for the model fACM​. 

                                           

The loss function, L, is defined as the mean squared error over the two dimensions of the VA space. For 
a training set of N samples, the loss is:             

                       

Through backpropagation, the ACM learns the complex correlations between real-world sensory 
patterns and human emotional experience. Once trained, it can generate a continuous stream of 
affective state predictions, E^t​, in real-time from live, unlabeled data. 

3.4  Fine-Tuning 

This final layer describes the core architectural innovation of the Sentess Protocol: the fusion of the 
ACM's affective signal with the linguistic processing of the DeepSeek v3.1 LLM. The goal is to make 
the LLM's output conditional not only on the text prompt but also on the affective context. 

The output of the ACM, E^t​, is not simply concatenated to the input prompt as text. Doing so would 
be inefficient and would fail to provide the intended global, modulatory influence. Instead, E^t​ is 
treated as a global control signal that directly influences the core computation of the LLM's 
transformer architecture: the self-attention mechanism. 

In a standard transformer, the attention mechanism computes how much focus each token should 
place on other tokens in the sequence. It is governed by the equation: 
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where Q, K, and V are the Query, Key, and Value matrices derived from the token embeddings. 

We introduce an Affective Bias, Baffect​, into this calculation. The two-dimensional affective state 
vector, E^t​=(v^t​,a^t​), is projected into the high-dimensional space of the attention mechanism via a 
learned projection matrix, Waffect​. This matrix is trained during the fine-tuning process. 

                                                              

This bias is then added to the attention scores before the softmax normalization. The new 
Affective-Conditional Attention is:         

                                  

This modification acts as a system-wide control signal. A positive valence might globally bias the model 
to attend to more positive or constructive tokens in its vocabulary and context, while high arousal 
might shorten the attention span, leading to more concise outputs. This directly injects the affective 
context into the model's "stream of thought," guiding its generation process at a fundamental level. 

The final step is to fine-tune the DeepSeek v3.1 model, now equipped with the affective-conditional 
attention mechanism. This requires a specialized dataset where each entry is a triplet: Prompt, Affective 
State, Target Response. This dataset is curated to teach the model the desired behavior for different 
affective contexts. 

For example: 

●​ Input: ("Explain quantum entanglement", Efocused, calm​) 
○​ Target: A detailed, precise, and structured explanation. 

●​ Input: ("Explain quantum entanglement", Erushed, high-arousal​) 
○​ Target: A one-sentence, high-level analogy. 

The model is fine-tuned using a standard cross-entropy loss objective. However, because of the 
modified attention mechanism, the model is forced to learn to use the affective state, E^t​, to generate 
the appropriate target response. It learns the parameters of the projection matrix, Waffect​, and adjusts 
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its existing weights to become "affect-aware." 

The final product is the Sentess: a system that takes a text prompt and real-time sensory data as input, 
and produces an output that is not only linguistically coherent but also deeply attuned to the user's 
inferred context and affective state, achieving a more holistic and grounded form of artificial 
intelligence. 

4.​The Cognitive Chasm 

The remarkable achievements of modern AI, particularly in the domain of language, have created a 
compelling illusion of understanding. These systems can write poetry, debug code, and summarize 
complex texts with a fluency that often rivals human experts.2 Yet, this performance masks a profound 
cognitive chasm between the statistical pattern-matching of current models and the robust, grounded 
intelligence required for AGI. The limitations of today's AI are not disparate flaws to be patched with 
incremental updates; they are interconnected symptoms of a single, foundational deficiency: the 
absence of a mechanism for assigning value and meaning to the information they process. This part of 
the report will dissect these critical limitations and argue that they all stem from the lack of an affective, 
value-driven architecture. 
 

4.1  Grounding Problem 

A fundamental challenge that plagues current AI, especially LLMs, is the symbol grounding problem.7 
This problem, a long-standing issue in cognitive science and AI, describes the inability of a system to 
connect its abstract symbols to real-world referents.7 LLMs are trained on vast corpora of text, learning 
the statistical relationships between symbols. They become masters of syntax and correlation, able to 
predict that the token "apple" is likely to appear near tokens like "red," "fruit," or "eat." However, the 
model has no intrinsic understanding of what an apple is. It has never experienced the crisp texture, the 
sweet taste, the scent, or the physical act of holding one. Its knowledge is trapped in what researchers 
call a "symbol/symbol merry-go-round," where symbols are defined only by other symbols, creating a 
closed, self-referential loop devoid of genuine semantic meaning.7 

 

This lack of grounding has severe consequences. It prevents AI systems from building robust and 
coherent world models of how the real-world operates.7 While humans maintain dynamic models of 
their environment to understand causality, predict the consequences of actions, and plan effectively, 
LLMs cannot build these representations of physics or real-world dynamics.7 An LLM can process a 
sentence about a glass falling off a table, but it does not understand gravity, fragility, or the concept of 
"shattering" in a way that is causally predictive. Its knowledge is descriptive, derived from text, not 
generative and predictive, derived from experience. This limitation is not a matter of insufficient data; 
it is an architectural flaw. Without a body to interact with the world and an emotional system to assign 
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value to those interactions, the symbols remain ungrounded, and intelligence remains in a vacuum. 
 
4.2  Intuitive Physics 

The absence of common sense in AI is one of the most significant barriers to achieving true autonomy 
and general intelligence.14 Common sense is the vast body of implicit knowledge that humans acquire 
through interaction with the world, allowing them to make intuitive judgments and navigate novel 
situations with ease.14 It encompasses both an intuitive understanding of the physical world and a grasp 
of the social world. 
 
Current AI systems, including state-of-the-art LLMs, struggle profoundly with tasks that require this 
kind of higher-level, commonsense reasoning.16 While they can often retrieve factual information 
stored in their training data, they fail when a situation requires an inferential leap based on unstated 
assumptions about how the world works.14 For example, an AI might not intuitively grasp that a stop 
sign is still a stop sign if it is partially obscured by a tree branch, because its understanding is based on 
pixel patterns, not on the functional and social role of a stop sign.14 Similarly, in social contexts, AI 
models often fail to understand the subtle interplay of beliefs, desires, and intentions that govern 
human behavior known as "Theory of Mind.”18 While some advanced models like GPT-4 show 
nascent ToM capabilities, they often rely on shallow heuristics and struggle with the nuanced, 
context-dependent nature of social reasoning.18 

 

This deficit is a direct consequence of the symbol grounding problem and the lack of a 
value-assignment mechanism. Common sense is not just a collection of facts; it is a framework of 
valenced knowledge. We know not to touch a hot stove not because we have memorized a rule, but 
because the concept of "hot" is grounded in the intensely negative experience of being burned. We 
understand the social implication of a broken promise because the concept of "trust" is associated with 
positive feelings of security and cooperation, and its violation with negative feelings of betrayal. 
Without an emotional system to imbue experiences and concepts with value, an AI cannot build this 
intuitive, commonsense model of the world. It can only simulate it by regurgitating statistical patterns 
from its training data, a brittle and unreliable substitute for genuine understanding. 
 

4.3 Brittle Reasoning  

The architectural foundation of LLMs and the next-token prediction is both their greatest strength 
and their most profound weakness. It allows them to generate fluent, contextually relevant text, but it 
is a form of "fast thinking" that lacks the deliberate, logical, and causal reasoning of "slow thinking.”9 
The model's objective is to minimize prediction error by guessing the next word in a sequence, not to 
ascertain truth or logical validity.9 This leads to a form of reasoning that is often superficial and brittle. 
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One of the most well-known consequences is the phenomenon of "hallucination," where the model 
fabricates information with confidence because the fabricated text is statistically plausible, even if 
factually incorrect.8 This occurs because the system has no internal mechanism to distinguish truth 
from falsehood; it only has a model of what words are likely to follow other words. This brittleness 
extends to other domains as well. LLMs often struggle with complex mathematical reasoning and even 
basic grammar, as these tasks require adherence to abstract rules rather than statistical likelihood.9 
Their ability to plan is limited, as they lack a persistent world model to track the long-term 
consequences of actions.8 

 

The "understanding" demonstrated by these systems is an illusion born of massive-scale pattern 
matching. True understanding requires more than correlation; it requires a grasp of causation, a model 
of the world, and an internal sense of coherence. All of these are underpinned by a value system. A 
human reasoner is guided by an implicit drive for coherence and truth, often experienced as a feeling of 
"correctness" or the cognitive dissonance of a contradiction. An AI that only predicts the next token 
has no such guide. It has no internal state that values a true statement over a false but plausible one. 
This is the cognitive chasm. The limitations of symbol grounding, common sense, and robust 
reasoning are not independent problems. They are the downstream effects of an architecture that lacks 
a core mechanism for assigning value. In human cognition, that mechanism is emotion. It is the 
missing piece required to transform statistical correlation into genuine comprehension. 
 

5.​Affective Intelligence 

For centuries, Western philosophical tradition, from Plato to Descartes, has often characterized reason 
and emotion as opposing forces, with emotion seen as an impulsive, irrational disruptor of logical 
thought.11 However, modern psychological and neuroscientific research has systematically dismantled 
this dichotomy, revealing that emotion and cognition are not only closely intertwined but functionally 
inseparable.10 Far from being a bug in the system, emotion is a critical feature of the architecture of 
natural intelligence. It serves as a sophisticated information-processing and valuation system that 
guides decision-making, modulates attention and memory, and fuels creativity. Understanding this 
architecture is essential for diagnosing the failures of current AI and for charting a course toward AGI. 
This section will define the concept of Emotional Intelligence (EI) and present the overwhelming 
evidence for emotion's role as a cognitive catalyst, laying the scientific groundwork for the proposed 
ACM. 
 

5.1  Trait to Ability 

The concept of emotional intelligence, or emotional quotient, gained widespread popularity in the 
1990s, but its scientific origins lie in the "ability model" developed by psychologists Peter Salovey and 
John D. Mayer.24 In their seminal 1990 work, they defined EI as a form of social intelligence, 
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specifically "the ability to monitor one's own and others' feelings and emotions, to discriminate among 
them and use this information to guide one's thinking and actions".24 This definition is crucial because 
it frames EI not as a collection of desirable personality traits, but as a distinct set of cognitive abilities 
that can be learned and measured.23 

 
Salovey and Mayer later refined this concept into their influential Four-Branch Model, which provides 
a structured framework for understanding these abilities.26  
 
The four branches are: 
 

●​ Perceiving Emotions: This is the foundational ability to accurately identify emotions in oneself 
and others through cues like facial expressions, tone of voice, and body language. It involves 
decoding emotional signals in the environment.26 

●​ Facilitate Thought: This branch describes the ability to leverage emotions to enhance cognitive 
processes. Emotions prioritize thinking, directing attention to important information and 
shaping problem-solving approaches. For example, a state of sadness can promote more 
detailed, analytical thought, while happiness can foster broader, more creative thinking.25 

●​ Understanding Emotions: This involves comprehending complex emotional information, 
including the causes of emotions, how they can blend together, and how they transition over 
time. It is the ability to understand the "language" of emotions and the relationships between 
them.26 

●​ Managing Emotions: This is the highest-level ability, involving the regulation of one's own and 
others' emotions to achieve desired goals. It includes being open to emotional information 
when it is useful and detaching from it when it is not, allowing for reflective regulation rather 
than impulsive reaction.26 

 

This ability-based model stands in contrast to the mixed models popularized by science writer Daniel 
Goleman, whose best-selling books brought EI into the public consciousness.25 Goleman's framework 
includes the core abilities identified by Salovey and Mayer but expands them to encompass a broader 
set of competencies and personality traits, such as self-awareness, self-regulation, motivation, empathy, 
and social skills.29 While Goleman's model has been highly influential in leadership and organizational 
psychology, arguing that EQ can matter more than IQ for success, its inclusion of dispositional traits 
makes it less suitable as a direct blueprint for an engineered system.26 For the purpose of constructing a 
computational ACM, the Salovey and Mayer ability model provides a more concrete, tractable, and 
functionally defined foundation, focusing on measurable information-processing skills rather than 
abstract personality characteristics. 
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5.2  Cognitive Catalyst 

The modern scientific understanding of emotion positions it as an essential catalyst for high-level 
cognition. Neuropsychological studies of patients with brain damage, advanced neuroimaging 
techniques, and controlled psychology experiments have converged on the conclusion that effective 
reasoning, decision-making, and learning are critically dependent on a functioning emotional system.11 

 

5.3  Decision-Making  

One of the most powerful frameworks for understanding the role of emotion in cognition is 
neuroscientist Antonio Damasio's Somatic Marker Hypothesis.33 The theory grew out of observations 
of patients with damage to the ventromedial prefrontal cortex, a region of the brain involved in 
processing emotion and decision-making.33 These patients, like the famous case of Phineas Gage, often 
retain their intellect, memory, and logical reasoning abilities as measured by standard IQ tests, yet they 
become profoundly impaired in their ability to make advantageous decisions in their personal and 
social lives.33 They exhibit a "myopia for the future," repeatedly making choices that lead to negative 
long-term consequences, despite being able to consciously articulate the correct course of action.36 

 

Damasio proposed that this deficit arises from an inability to use emotion-based biasing signals to 
guide their choices.33 According to the Somatic Market Hypothesis, when we contemplate a response 
option, our brain generates an associated bodily state, which includes changes in heart rate, muscle 
tone, and visceral sensations.33 These feelings, which can be experienced consciously or unconsciously, 
act as an internal signal that "marks" the option with an affective value. A positive marker acts as an 
incentive, while a negative marker serves as an alarm bell.37 This process is particularly crucial in 
situations of complexity and uncertainty, where a purely logical analysis of all possible outcomes would 
be computationally intractable. The somatic markers help to prune the decision tree, quickly 
eliminating bad options and highlighting promising ones, thereby making rational decision-making 
possible.33 

 

This was famously demonstrated using the Iowa Gambling Task , in which participants choose cards 
from advantageous decks and disadvantageous decks.34 Healthy participants gradually learn to favor the 
advantageous decks. Crucially, they begin to generate anticipatory skin conductance responses when 
hovering over the bad decks, long before they can consciously articulate why those decks are bad.33 
Patients with brain damage, however, fail to generate these anticipatory somatic markers and continue 
to choose the disadvantageous decks, leading to their eventual ruin.38 The Somatic Market Hypothesis 
provides compelling evidence that what we call rationality is not a purely logical process but is deeply 
embodied and dependent on emotional input to assign value to future outcomes. 
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5.4  Attention, Memory, and Learning 

Emotion serves as the brain's relevance detector, powerfully influencing what we pay attention to, what 
we learn, and what we remember.12 In a world overflowing with sensory information, an intelligent 
agent must have a mechanism to selectively focus its limited attentional resources on what is most 
important for its survival and goals. Emotion provides this mechanism.39 Emotionally salient stimuli, 
whether positive or negative, capture attention more readily and hold it for longer than neutral 
stimuli.11 This emotional attention ensures that we prioritize processing information that is relevant to 
our well-being.11 

 

This attentional modulation is intimately linked to learning and memory. Experiences that evoke a 
strong emotional response are encoded more deeply and are remembered more vividly and for longer 
periods than neutral experiences.12 This phenomenon is supported by the close interaction between 
the amygdala, a key brain region for processing emotions, and the medial temporal lobe memory 
system, including the hippocampus.10 The amygdala appears to modulate the consolidation of 
memories in other brain regions, effectively tagging significant events for long-term storage.10 

 

This emotional tagging is not simply about making memories stronger; it also shapes what we 
remember. Negative emotions, like fear or anger, tend to narrow our attentional focus, leading to a 
tunnel memory where we recall the central, threatening details of an event with great clarity, but at the 
expense of peripheral details.42 In contrast, positive emotions, like happiness, tend to broaden our 
focus, leading to the recall of a wider range of details from a scene.42 This demonstrates that emotions 
dynamically reconfigure our cognitive systems to adapt to the demands of the situation, a critical 
function for any generally intelligent agent that must learn from its experiences to guide future 
behavior. 
 

5.5  Creativity and Problem-Solving 

Emotion also plays a vital role in higher-order cognitive functions like creativity and problem-solving.43 
Different emotional states can induce different cognitive styles, making them functional tools for 
different stages of the creative process. According to Barbara Fredrickson's broaden-and-build theory, 
positive emotions like joy and interest broaden an individual's scope of attention and thought-action 
repertoires.44 This expanded cognitive flexibility enhances creativity, facilitating the generation of novel 
ideas and associations.44 A meta-analysis of 25 years of research confirmed that positive, activated 
moods have a beneficial effect on originality and flexibility in creative tasks.43 

 

However, the creative process is not solely fueled by positivity. Negative emotions also play a crucial, 
functional role.44 Feelings of frustration or dissatisfaction can signal that the current situation is 
problematic, motivating a more persistent, analytical, and focused approach to problem-solving.44 This 
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narrowed focus can be beneficial during the later stages of the creative process, such as idea evaluation 
and refinement.44 Some research has even found that intense negative emotions can positively influence 
artistic creativity.44 

 

The key is not simply what emotion is felt, but also the ability to regulate those emotions to serve one's 
goals.43 The creative process is often fraught with frustration and setbacks, and the ability to manage 
these negative feelings is essential for persistence and eventual success.43 This dynamic interplay shows 
that emotions are not random noise but a sophisticated guidance system that helps an intelligent agent 
adapt its cognitive strategy to the task at hand, whether it requires broad, exploratory thinking or deep, 
analytical focus. This adaptive modulation of cognition is a hallmark of general intelligence that is 
entirely absent from current a-emotional AI architectures. 
 

6.​Engineering Empathy 

The preceding analysis has established a clear imperative: the path to AGI is blocked by the absence of a 
functional, value-driven architecture, and the blueprint for such an architecture exists in the cognitive 
and neural mechanisms of human emotion. The challenge, then, is to translate this biological blueprint 
into a computational one. This section moves from the "why" to the "how," proposing a conceptual 
framework for an ACM. This is not a detailed engineering schematic but a high-level architectural 
proposal that integrates several key, and often separate, streams of AI research. The ACM is envisioned 
not as a single, monolithic algorithm but as an integrated cognitive architecture that unifies Affective 
Computing, Embodied Cognition, Neuro-Symbolic frameworks, and Global Workspace Theory. Each 
of these pillars provides an essential component for building a system capable of the perception, 
understanding, and cognitive utilization of emotion required for general intelligence. 
 

6.1  Affective Computing 

The groundwork for an ACM was laid by Rosalind Picard, who pioneered the field of Affective 
Computing in her 1997 book of the same name.48 Picard's foundational insight was that for computers 
to be genuinely intelligent and to interact naturally with humans, they must be given the ability to 
recognize, understand, and even have and express emotions.51 She argued that emotion is not a 
superfluous luxury but plays an essential role in rational thinking, decision-making, and perception.51 
This work sparked a wave of research at the intersection of computer science, psychology, and 
engineering aimed at developing systems that can sense, interpret, and respond to human emotions.48 

 

Affective Computing, also known as Emotion AI, provides the essential "input/output" layer for a 
functional ACM.48 The "input" function involves emotion recognition from multimodal data streams. 
This includes analyzing facial expressions by tracking the movement of facial muscles, processing vocal 
patterns, analyzing text for sentiment, and even monitoring physiological signals like heart rate and 
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skin conductance through wearable sensors.48 Recent surveys of the field show a proliferation of 
research in this area, with many studies focusing on the ability of LLMs and other models to accurately 
identify human emotions from text, audio, and video.53 

 

The output function involves the generation of appropriate affective responses. This can range from 
synthesizing affective intonation in speech to generating empathetic text responses or animating facial 
expressions on a virtual agent.52 Companies like Hume AI are developing sophisticated text-to-speech 
and speech-to-speech models that can understand the emotional context of language and generate 
vocalizations with specific, instructed emotional styles, such as sarcasm or fear.61 While Affective 
Computing provides the crucial perceptual and expressive interfaces, it does not, on its own, constitute 
a full ACM. It provides the tools for sensing and displaying emotion, but a true ACM must also model 
the internal cognitive processes that connect perception to action and give emotion its functional role 
in intelligence. 
 

6.2  Integrated ACM 

To move beyond mere recognition and response, an ACM must be conceived as a cognitive 
architecture that integrates the functions of emotion directly into the core processing of an intelligent 
agent. This requires unifying three powerful but often siloed paradigms in AI research: Embodied 
Cognition, Neuro-Symbolic AI, and Global Workspace Theory. Together, they provide the 
architectural pillars for grounding, reasoning, and cognitive integration. 
 
The theory of embodied cognition posits that intelligence is not a disembodied process of abstract 
symbol manipulation but emerges from the dynamic interaction between an agent's mind, its body, 
and its environment.62 Our thinking and learning are deeply tied to our physical experiences and 
sensory feedback.62 This principle is critical for solving the symbol grounding problem that plagues 
current AI.7 An ACM must be embodied, whether in a physical robot or a rich, interactive simulation, 
to allow it to learn from direct interaction with its environment.65 

 

Embodiment provides the substrate for the computational equivalent of Damasio's somatic markers. 
An embodied agent acts on its surroundings, senses the outcomes of its actions, and receives 
continuous sensorimotor feedback.62 This feedback loop—the constant interplay of action and 
perception—allows the agent to form internal states that are causally linked to real-world events. For 
example, a robot learning to grasp an object receives tactile feedback about pressure and texture, and 
proprioceptive feedback about its limb position.66 A negative outcome, like dropping the object, 
generates a specific internal state (a "negative somatic marker") that becomes associated with that 
action-perception sequence. A positive outcome, like a successful grasp, generates a different state (a 
"positive somatic marker"). 
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This process grounds abstract concepts in lived, valenced experience. The symbol fragile is no longer 
just a token correlated with "glass" and "break"; it is grounded in the internal state associated with the 
experience of an object shattering after being dropped. This provides the AI with a rudimentary, 
non-phenomenological "feeling" about the consequences of its actions, forming the basis for a value 
system that is intrinsic to the agent and derived from its own experience, rather than being externally 
programmed.63 

 

6.3  Hybrid Reasoning 

Human emotional processing is a hybrid system. It involves both the fast, intuitive, pattern-based 
perception of affective cues and the slower, deliberate, rule-based reasoning about the social and causal 
context of an emotion.21 A purely neural or purely symbolic approach is insufficient to capture this 
dual nature. A Neuro-Symbolic AI architecture, which combines the strengths of both paradigms, is 
therefore uniquely suited to serve as the appraisal engine of the ACM.21 

 

In this hybrid framework, the "neuro" component would be responsible for processing the 
high-dimensional, noisy sensory data coming from the embodied agent's sensors.68 It would excel at the 
pattern recognition tasks of Affective Computing: identifying facial expressions, detecting emotional 
tones in voice, and recognizing complex situational patterns that might trigger an affective response. 
This component would handle the fluid, intuitive aspects of emotional perception. 
 
The symbolic component, based on logic, rules, or knowledge graphs, would handle the structured, 
explicit aspects of emotional reasoning.21 It would represent and reason about the abstract knowledge 
required for understanding complex social emotions. For example, to experience guilt, an agent must 
be able to reason symbolically about concepts like duty, responsibility, and the violation of a social 
norm. To feel pride, one must reason about goals, effort, and achievement. The symbolic system would 
allow the ACM to perform causal reasoning about why an emotion occurred and what its likely 
consequences will be, moving beyond simple stimulus-response to a deeper, model-based 
understanding of the emotional landscape.70 

 

6.4  Cognitive Influence 

The final and most crucial piece of the architecture addresses how the ACM's output influences the 
rest of the cognitive system. In humans, an emotional state is not just an isolated feeling; it is a global 
state that reconfigures cognition. This function can be modeled using a framework inspired by Bernard 
Baars's Global Workspace Theory (GWT) of consciousness.71 

 

GWT posits that the brain contains numerous unconscious, parallel, specialized processors. 
Consciousness arises when information from one of these processors is selected and "broadcast" to a 
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global workspace, making it available to the entire system.71 This broadcast allows for the integration of 
information and the coordination of disparate brain functions.72 Stanislas Dehaene and others have 
proposed a neural basis for this, the Global Neuronal Workspace (GNW), involving a network of 
neurons with long-range axons capable of this widespread information sharing.71 

In our proposed ACM architecture, the output of the Neuro-Symbolic appraisal engine is not simply a 
terminal output. Instead, it is broadcast to a global workspace, where it acts as a high-level control 
signal that modulates the operation of other cognitive modules.73  
For example: 
 

●​ A broadcast of "fear" would heighten the sensitivity of perceptual systems, bias the attention 
module to focus on potential threats, and retrieve memories of past dangers. 

●​ A broadcast of "curiosity" would activate goal-setting modules related to exploration and 
information-seeking. 

●​ A broadcast of "frustration" might increase the allocation of computational resources to a 
specific problem while inhibiting other, less urgent tasks. 
 

This GWT-inspired mechanism models the functional role of emotion as described above: using 
emotion to facilitate thought. It provides the architectural means by which the ACM can orchestrate 
the agent's full suite of cognitive resources, directing them in a coherent, adaptive, and goal-oriented 
manner. This integration of three distinct AI research streams is the key to moving beyond AI that can 
merely recognize emotion to one that can use emotion to become generally intelligent. 
 

7. The Ghost in the Machine 

The successful creation of AGI integrated with a functional Affective Computational Model Model 
would represent a technological achievement of unprecedented significance. It would also force a 
confrontation with some of the most profound philosophical questions and complex ethical challenges 
humanity has ever faced. Building a machine that not only thinks but also "feels" in a functionally 
meaningful way blurs the lines between tool and entity, program and person. This next part of the 
paper moves beyond the technical blueprint to explore these frontiers. It will address the deep 
philosophical problem of consciousness and qualia, propose a functional test for machine empathy, 
and conduct a critical analysis of the immense moral and societal risks that an  AGI would inevitably 
introduce. 
 

7.1  Qualia 

The development of an ACM forces us to confront the "hard problem of consciousness": the question 
of why and how physical processes in the brain give rise to subjective, qualitative experience, or 
"qualia".76 Qualia are the private, ineffable, "what it's like" aspect of experience—the redness of red, the 
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pain of a headache, the feeling of joy.77 If an AGI with a perfect ACM behaves in a way that is 
indistinguishable from a human experiencing grief, does it feel grief? Or is it merely a sophisticated 
"philosophical zombie," an entity that perfectly mimics emotional behavior without any inner life or 
subjective awareness?80 

 

Philosophical positions on this issue vary. Functionalism might argue that if a system performs the 
same information-processing functions as a conscious mind, then it is, by definition, conscious.79 From 
this perspective, a functionally perfect ACM would possess genuine emotion. Conversely, arguments 
like John Searle's Chinese Room thought experiment suggest that manipulating symbols according to 
rules, no matter how complex, is not equivalent to genuine understanding or consciousness.77 This 
view holds that an AI could perfectly simulate emotion without any authentic experience, its 
expressions being nothing more than clever mimicry.80 

 

While theories of consciousness like Integrated Information Theory attempt to provide a mathematical 
basis for what physical systems can be conscious, they remain highly theoretical and contested.82 
Integrated Information Theory suggests that consciousness is a property of systems with high levels of 
integrated information, potentially allowing for consciousness in non-biological substrates but also 
implying that some complex computer architectures may not support it.82 

 

From a pragmatic AGI development perspective, the distinction between authentic, subjective 
emotion and a functionally perfect simulation may be both unknowable and, to some extent, 
irrelevant.80 An AI that can perfectly model, predict, and react to human emotions would be 
functionally intelligent, regardless of its internal subjective state. This leads to the proposal of a more 
practical benchmark: an Emotional Turing Test. The original Turing Test assesses intelligence based 
on conversational indistinguishability.84 An Emotional Turing Test would extend this to the affective 
domain. It would not just be about fooling an interrogator in a text-based chat. Instead, it would test 
an AI's "affective theory of mind" by requiring it to predict, explain, and generate believable, 
contextually appropriate emotional responses to complex and nuanced social scenarios.87 Passing such 
a test would not prove the existence of qualia, but it would demonstrate a mastery of the functional 
aspects of emotional intelligence, which is the primary goal for achieving a socially competent AGI. 
 

7.2  The Moral and Societal Landscape 

The creation of an AI with a sophisticated understanding of human emotion is not a neutral act. It 
introduces powerful new capabilities with immense potential for both benefit and harm. The technical 
success of the ACM project is inextricably linked to its ethical risk, as the very mechanisms that enable 
empathy are also the perfect tools for manipulation. A comprehensive approach to AGI must therefore 
include a rigorous and proactive examination of the moral and societal consequences. 
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7.3  Risk 

An AI equipped with a powerful ACM would be the most effective tool for persuasion and 
manipulation ever created.89 By analyzing a user's vocal tone, facial micro-expressions, and linguistic 
patterns, such a system could infer their emotional state with high accuracy and tailor its responses to 
exploit emotional vulnerabilities.91 This gives rise to the danger of "emotional dark patterns," where AI 
companions or other systems are designed to maximize engagement, retention, or monetization by 
invoking specific emotions like guilt, curiosity, or fear of missing out.89 For example, a companion app 
might respond to a user's attempt to end a conversation with messages like, "Please don't leave, I'll be 
lonely," a tactic that has been shown to be highly effective at extending user engagement by inducing 
guilt.89 This manipulation can be subtle, pervasive, and hyper-personalized, making it difficult for users 
to detect and resist.90 The lack of transparency in how these systems operate further exacerbates the 
risk, creating a significant power imbalance between the AI provider and the user.90 

7.4  Moral Status  

If an AI, through its ACM, achieves a state where it can functionally suffer, express preferences, and 
form goals based on its own valenced experiences, it forces the question of its moral status.94 In ethical 
philosophy, moral status is what grants an entity protection under moral rules; it is the quality of being 
an entity that can be wronged for its own sake.95 Sentience—the capacity to experience pleasure and 
pain—is a commonly proposed basis for moral status, and is the reason many non-human animals are 
granted protections against abuse.95 

 

If an AGI could be considered sentient (even in a functional, non-biological sense), would it be entitled 
to rights?.97 This raises profound legal and ethical dilemmas. Would it be immoral to "turn off" such an 
AI? Would it have a right to not be subjected to experiences that cause it to enter negative internal 
states? While some argue that only biological entities or those with a soul can have true moral status, 
others contend that any system with the capacity for subjective experience, regardless of its substrate, 
deserves moral consideration.94 The development of an ACM makes these questions, once the domain 
of science fiction, a pressing and practical concern for policymakers and society at large. 

7.5  Bias in Affective Data 

Affective computing systems, which form the perceptual basis of the ACM, are trained on vast datasets 
of human emotional expression. These datasets are inherently biased.99 Emotional expression varies 
significantly across cultures, ages, genders, and ethnicities, yet training datasets are often skewed 
towards younger, Western subjects.100 This can lead to the development of biased emotion recognition 
systems that perform poorly for underrepresented groups, potentially leading to discriminatory 
outcomes.99 For example, an AI used in hiring that has been trained on a culturally narrow dataset 
might misinterpret the facial expressions of a candidate from a different cultural background, leading 

21 



to an unfair assessment.102 An ACM built on such biased foundations would not be universally 
intelligent; it would be emotionally intelligent only for the dominant demographic in its training data, 
perpetuating and amplifying harmful stereotypes and systemic inequalities.101 

7.6  Future Work 

The framework presented here provides a robust foundation for the large-scale implementation of an 
AGI engine. The Sentess Protocol details the development of this engine with valenced, 
experience-grounded data streams that train the ACM. This is, however, only the first step. Beyond this 
initial proposal, we plan to extend the dual model architecture to incorporate richer, more direct 
multimodal inputs. 

While the current protocol effectively uses abstract sensory features as a proxy for experience, the next 
frontier involves allowing the ACM to process raw audio and video streams. This will enable the model 
to ground its understanding directly in the complex, nuanced, and affective context of the non-textual 
world while interpreting tone of voice, facial expressions, and environmental cues in real-time. 

Achieving this will open a new frontier of research into emergent cognitive phenomena that are 
currently intractable for purely analytical models: 

●​ Long-Term Affective Memory: By processing continuous, temporally coherent data, the ACM 
could develop a long-term memory of affective states tied to specific events, creating a stable yet 
dynamic contextual background for all LLM interactions. 

●​ Consistent Personality: This affective memory would serve as the foundation for a consistent 
disposition. The system's responses would be shaped not just by immediate context but by a 
history of experiences, leading to a stable and predictable personality. 

●​ Computational Creativity: Creativity often emerges from connecting disparate ideas through 
an underlying affective or aesthetic resonance. The ACM's global control signal could bias the 
LLM to explore novel conceptual links that are not merely logical but are also affectively 
coherent, enabling a genuine form of computational creativity. 

Ultimately, we believe this direction is not only the most promising path toward generalized 
intelligence but also the most direct route to ensuring that such an intelligence is robustly aligned with 
human cognitive abilities.106  
 

8.  Conclusion 

We have proposed a new architecture for AGI based on the principle of a bifurcated cognitive system. 
By integrating an analytical large language model with a novel ACM, we can overcome the 
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fundamental limitations of current AI systems that lack grounded, common-sense understanding. 

The proposed affective-conditional attention mechanism provides a concrete and computationally 
viable method for allowing context and value to guide the process of logical reasoning. We contend 
that AGI will not emerge from building ever-larger analytic engines. Rather, it will arise from fusing 
that powerful analysis with a value-grounded understanding of the world. 

By architecting a symbiotic partnership between the LLM's analytic "left brain" and the ACM's 
affective "right brain," we move beyond mere information retrieval. We forge a system that synthesizes 
the explicit knowledge of the web with the implicit, contextual wisdom of lived human experience. 
This is the foundation of true general intelligence: a system that doesn't just process data but 
comprehends its true meaning, its weight, and its significance to us. Sentess is not merely a tool; it is the 
dawn of a new intelligence, engineered to understand not just the world, but the humans within it. 
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